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Abstract. We consider the dynamics of the overdamped Josephson junction under the influence of an
external quasiperiodic driving field. In dependence on parameter values either a quasiperiodic motion or
a strange nochaotic attractor (SNA) can be observed. The latter corresponds to a resistive state in the
current-voltage characteristics while for quasiperiodic motion a finite superconducting current exists for
zero voltage. It is shown that in the case of SNA a nonzero mean voltage across the junction can appear due
to symmetry breakings. Based on this observation a detailed symmetry consideration of the generalized
equation of motion is performed and symmetry conditions ensuring zero mean voltage across the junction
are found.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 85.25.Cp Josephson devices –
74.80.Fp Point contacts

1 Introduction

The transport phenomena in nonlinear systems have re-
ceived an enormous attention in the last decade. The main
nontrivial effect here – appearance of a directed current
without directed force – is called ratchet; it has been
used to explain mechanisms in molecular motors, elec-
tronic transport through superlattices, and the dynamics
of Josephson junctions, to name only a few of important
examples (see, e.g. [1,2] and references therein).

In a typical formulation of the problem, one consid-
ers a particle in an one-dimensional spatially periodic po-
tential under periodic and fluctuating forces, and studies
the mean velocity of the motion. If only thermal (white)
noise is present, merely a diffusive transport can be ex-
pected, i.e. in average there is no preferred direction of
motion of the particle. The question “under which addi-
tional requirements a directed motion could be observed”
has motivated wide investigations of different mechanisms
for ratchets. One way to induce a directed transport in
periodic asymmetric potentials is to add a colored Gaus-
sian noise in addition to the white thermal one [3,4]. Di-
rected transport can be induced by other forces as well,
provided they permanently keep the system away from
the equilibrium state. In particular, purely deterministic
dynamics is also able to cause a ratchet. In a determinis-
tically rocked (i.e. when an additional space-independent
periodic in time force is added) periodic potential without
reflection symmetry, one can observe regular and chaotic
transport depending on the parameters values [5]. In [6]
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it has been found that current reversals in deterministic
ratchets occur due to a bifurcation from a chaotic to a peri-
odic regime. Recently, rather general considerations [7,8]
have shown that ratchets appear due to a broken time-
space symmetry [4,9].

An important application of the studies of transport
phenomena is the Josephson junction [10]. Its dynamics
is described by an equation of motion of a particle in a
periodic potential. Here a directed particle current due to
a non-zero mean velocity corresponds to a non-zero mean
voltage across the junction1, thus one often speaks of a
“rectification” instead of a “ratchet”. The resulting pecu-
liarities of the current-voltage characteristics of Josephson
junctions can be observed experimentally. In the simple
cases the agreement of theory and experiment is rather
good: in [11] it has been demonstrated that the current-
voltage curves, theoretically predicted basing on the over-
damped dynamics model, coincide with the experimen-
tal data (see [12–14]). Recently, these investigations have
been extended to the dynamics of arrays and ladders of
Josephson junctions [15].

In this paper we consider an overdamped Josephson
junction under the influence of an external quasiperiodic
two-frequency driving. Due to the overdamped dynamics,
chaos cannot be observed in this system. However, simi-
lar to other quasiperiodically forced systems, two possible
dynamical regimes can be expected depending on param-
eter values, namely the quasiperiodic motion on a torus
and the strange nonchaotic behavior. Thus, the dynamical

1 This means that in this state there is no supercurrent flow-
ing through the junction and the state is resistive.
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regime with the highest possible complexity corresponds
to the appearance of strange nochaotic attractors (SNAs).
SNAs have been first described by Grebogi et al. [16] and
since then investigated, both theoretically [17] and exper-
imentally [18]. They share properties of regular as well as
of chaotic attractors. Their geometrical structure is frac-
tal like that of typical chaotic attractors, but they are not
sensitive to initial conditions, because the non-trivial Lya-
punov exponents of typical trajectories are negative. We
will demonstrate that the appearance of a SNA can change
drastically the current-voltage characteristics of the junc-
tions. Therefore, we first study in detail the regions of
quasiperiodic motion and strange nonchaotic behavior in
the parameter space, and the transition phenomena be-
tween both these possible dynamical regimes. To distin-
guish between tori and SNA we suggest two methods, first
one is based on their different geometrical structure and
the second one on their spectral properties. Furthermore,
we are interested in the transport phenomena and address
the question how the transport (the current-voltage char-
acteristics) depends on the existing dynamical regime and
on the symmetry properties of the driving field and of
the potential. To this end, we will discuss general symme-
try properties for an overdamped particle in a spatially
one-dimensional periodic potential under the influence of
a two-frequency quasiperiodic driving field.

The paper is organized as follows. In Section 2 we intro-
duce the equations of the quasiperiodically driven Joseph-
son junction. In the following Section 3 we investigate the
dynamical behavior in dependence on the parameter val-
ues and present a method to distinguish numerically be-
tween tori and SNAs. Then we suggest to use the spectral
properties as a tool to determine the kind of the dynamics
experimentally. For both possible dynamical regimes the
current-voltage characteristics is discussed in Section 5.
In Section 6 we consider general equations of motion and
their symmetries. The undertaken symmetry considera-
tions are used in Section 7 to find the conditions for the
existence of a nonzero mean voltage across the junction.
The results are summarized in Section 8, where we also
discuss possible experimental implications.

2 Equations of motion

2.1 Overdamped junction

In order to derive the equation of motion we base on
the Resistively Shunted Junction (RSJ) model [11], where
the ideal Josephson junction (the supercurrent) is shunted
parallely by a resistor and a capacity. Thus, the current
components to be taken into account are the supercurrent,
the normal current, and the displacement current. The su-
percurrent IS = IC sin(X) with maximal amplitude IC is
a function of the phase difference (Josephson phase) X of
both condensate wave functions. Then, the basic equation
describing the time evolution of the Josephson phase X
according to the RSJ model is given by

ω−2
p Ẍ + ω−1

c Ẋ + sin(X) = i(t), i(t) = I(t)/IC , (1)

where ωp = (2eIC~−1C−1)1/2 is the junction plasma fre-
quency and ωc = 2eICR/~ is the characteristic frequency.
The external current I(t) is normalized with respect to
the maximal amplitude IC of the supercurrent. The dy-
namics of the junction is determined by the value of the
dimensionless McCumber parameter β = (ωc/ωp)2 which
measures the strength of the damping or the capacitance
effect. In the high damping limit β → 0 with rescaling
time τ = ωct equation (1) simplifies to

Ẋ + sin(X) = i(t). (2)

This model of the dynamics of the overdamped Josephson
junction will be considered throughout this paper. The
variation of the Josephson phase is related to the volt-
age across the junction according to the so called phase-
voltage relation

Ẋ =
2e
~
V. (3)

As can be read out from equation (3), a non-zero mean
velocity 〈Ẋ〉 just corresponds to a non-zero mean volt-
age 〈V 〉 across the junction.

2.2 Mechanical analogs

Equation (2) describing the dynamics of the overdamped
Josephson junction has important mechanical analogs. In
the context of transport phenomena the most interest-
ing is the one of the overdamped particle moving along
the coordinate X with velocity Ẋ in a periodic potential
U(X) = − cos(X), driven by an external force i(t). Ac-
cording to the phase-voltage relation (3), the occurence
of a mean voltage across the junction can be interpreted
as a nonzero mean velocity of the particle, i.e. as a di-
rected transport. Another mechanical analog is a plane
mechanical pendulum in a uniform gravity field. Here, X
is the angle of the deviation from the equilibrium of the
pendulum, Ẋ is the angular velocity, and the current i(t)
corresponds to the torque.

2.3 Quasiperiodically driven Josephson junction

We are going to investigate now the dynamics of sys-
tem (2) under the influence of a quasiperiodic driving field.
Therefore, below the external driving term i(t) will be an
external field with zero mean, characterized by two in-
commensurate frequencies. While we write the equations
in the most general form in Section 6 (see (8)), here we
investigate a particular form that reads

Ẋ = F (X,ϕ1, ϕ2)
= − sin(X) + b1 sin(ϕ1) + b2 sin(ϕ2),

ϕ̇1 = ω1,
ϕ̇2 = ω2,

(4)

where b1, b2 are constant amplitudes of the components
of the external driving field at frequencies ω1 and ω2. The
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driving frequencies are chosen to be ω1 = 1 and ω2 =
ω1(
√

5−1)/2. Their ratio is irrational, and is here fixed to
be the inverse of the golden mean ω = ω2/ω1 = (

√
5−1)/2,

thus the external driving is quasiperiodic. There exist two
trivial zero Lyapunov exponents connected with phases ϕ1

and ϕ2 of the quasiperiodic driving, and only one non-
trivial Lyapunov exponent connected with the Josephson
phase X . Because the divergence of the phase space vol-
ume is non-positive, the only non-trivial Lyapunov expo-
nent has to be less than or equal to zero. Thus, it is im-
possible to observe chaos in the system.

3 Dynamical regimes

3.1 Constructing the Poincaré map

We are interested in the qualitative features of the dy-
namics: whether a quasiperiodic motion on a torus or a
strange nonchaotic behavior occurs. Therefore, it is con-
venient to consider only a stroboscopic representation
of the dynamics using periodicities inherent in the ex-
ternal field. We produce a series of X values by look-
ing at the system only if the phase ϕ1 = ω1t fulfils
the condition ϕ1 mod 2π = 0. Using this stroboscopic
method we obtain a series of X values discretized in time:
X(T1), X(2T1), X(3T1), · · · , where T1 is the period cor-
responding to the frequency ω1, T1 = 2π/ω1. Simultane-
ously, we trace the phase φ2 at the same moments of time,
producing the series θn = φ2(nT1) (mod 2π). The time
evolution of the resulting phase variable θ is given by the
phase shift θn+1 = θn + 2πω (mod 2π). Now it is possible
to draw the attractors on the Poincaré section (X, θ).

An important quantity to be calculated from the nu-
merical solution of (4) is the mean velocity 〈Ẋ〉. Because
of the quasiperiodicity of the forcing, suitable for accurate
numerics finite-time approximations read

〈Ẋ〉 = lim
n→∞

X(FnT1)−X(0)
FnT1

, (5)

where Fn is a Fibonacci number of possibly high level n.
The Fibonacci numbers are defined by F0 = 0, F1 =
1, F2 = 1, Fn+1 = Fn + Fn−1.

3.2 Geometrical characterization of the dynamics

As has been already mentioned above, in dependence on
the parameter values b1 and b2 two different dynamical
regimes, namely torus and SNA can be observed. In gen-
eral, there can be two types of torus in the system (4),
depending on the mean value of 〈Ẋ〉 (rotation number
in X direction). If this rotation number is in rational rela-
tion with ω1, ω2, i.e. 〈Ẋ〉 = p1

q1
ω1 + p2

q2
ω2, then one speaks

on 2-torus; it is represented by an attractive curve on the
Poincaré map. If 〈Ẋ〉 is not in rational dependence with
ω1, ω2, one speaks on 3-torus, the trajectory in this case
fills the whole phase space and all three Lyapunov expo-
nents are zero [19]. Below we study the parameter values,

Fig. 1. Examples for the possible dynamical regimes for the
system (4); (a) torus for b1 = b2 = 0.5, and (b) SNA for b1 =
b2 = 2.0.

for which no 3-tori occur, and hereafter “torus” means
“2-torus”.

Figures 1a and b show an example for the torus and
the SNA, respectively. Both regimes are characterized by
negative nontrivial Lyapunov exponents, but differ obvi-
ously in their geometrical structure. In the case of torus
shown in Figure 1a X is a smooth function of phase θ,
whereas the attractor corresponding to the strange non-
chaotic behavior (Fig. 1b) has a fractal structure.

How to distinguish between both regimes? Here we
present a method based on the direct utilization of their
different geometrical structures. Looking at Figure 1b
more precisely one notes that the geometrical structure
of the SNA is characterized by jumps of approximately
±2π with respect to X values. Therefore, one should ob-
serve whether X values change much inside a small θ-
interval. To this end, it is helpful to define a threshold
inside which X values of closely neighboring θ values may
differ from each other. This threshold can only be defined
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Fig. 2. Dynamical regimes (grey: SNA, white: torus) in the
parameter plane (b1, b2) of the system (4) detected by using
the geometrical approach described in the text. The little box
is presented enlarged in Figure 3.

on the basis of considering a sample of SNAs and tori and
it is a choice valid for the special kind of system only. For
the present system the threshold is given by 2π. In the
case when the values of |X | differ by a value larger than
2π within a small θ interval, the dynamical regime is a
SNA. A torus is observed if the presence of a SNA can be
excluded, i.e. if the absolute values of X do not differ by
magnitudes ≥ 2π for θ values inside a small interval.

3.3 Parameter plane arrangement and fractal
tori collision

Using the just described geometrical approach, the dy-
namical regimes of system (4) in dependence on the pa-
rameter values b1 and b2 in the range [0, 3.6]× [0, 3.6] have
been estimated (Figs. 2 and 3). For particular parameter
values marked by crosses in Figure 3 we present the attrac-
tor and the repeller (i.e. the attractor in system (4) solved
backward in time) in the Poincaré section (Fig. 4). On one
hand Figure 4 shows the attractors, but on the other hand
also one of the possible mechanisms leading to the appear-
ance of SNA, namely the collision of stable and unstable
invariant tori in a dense set of values of phase θ but not
in every value of θ [20]. The stable and unstable invariant
sets in (4) have been computed by integrations forward
and backward in time, respectively. In the Poincaré sec-
tion we obtain stable and unstable tori for white regions
of Figure 2. Coming closer to grey regions of the existence
of the SNA by varying one of the parameters b1 and b2, or
both, the stable and unstable tori become more wrinkled
and come closer to each other (Figs. 4a,b). Finally they
touch in a dense set of θ values but not at every value
of the phase θ. As a result of this fractal tori collision a
strange nonchaotic attractor appears (Fig. 4c).

Fig. 3. Enlargement of the box in Figure 2 showing the dy-
namical regimes (grey: SNA, white: torus) in the parameter
plane (b1, b2). The crosses denote the positions on the param-
eter plane (b2 = 1.26, b1 = 3.06, b1 = 2.904, b1 = 2.86) for
which the attractors are presented in Figure 4.

4 Spectral properties

In experiment the distinction between both dynamical
regimes could be done by considering the autocorrelation
function (ACF) and the power spectrum. Note, that we
refer in the following to the time-continuous process to
estimate the spectral properties, whereas the discretized
dynamics obtained by the Poincaré-section method is used
to plot the attractors.

In the case of SNA we have observed a diffusion of
the trajectory through the phase space. Thus, the time
series X(t), considered in the unbounded domain −∞ <
X < ∞, is non-stationary. Therefore, we turn to another
observable, namely sin(X), which is stationary in time,
and investigate its spectral properties. For the Joseph-
son junction this is the superconducting current. For con-
sistency, we do the same for the case of torus although
stationarity can be assumed here. The time series sin(X)
corresponding to the torus shown in Figure 1a is repre-
sented in Figure 5a. As is well known, the autocorrelation
function (ACF) of this quasiperiodic process is quasiperi-
odic, too (see Fig. 5b). Its main peaks return to value 1
and subsequent time differences between main peaks are
equal to the product of the subsequent Fibonacci num-
bers and the period T1, ∆n = FnT1. The power spec-
trum (Fourier transform) has peaks at the frequencies
f1 = ω1/2π ≈ 0.159 and f2 = ω2/2π ≈ 0.0983, corre-
sponding to the driving frequencies, and their harmonics
(some of them are marked in Fig. 5c).

The time series sin(X) of the process generated by the
SNA in Figure 1b is shown in Figure 6a. It has a more com-
plex time dependence compared to the case of torus. This
will be reflected in its spectral properties. The autocorre-
lation function of this process is represented in Figure 6b.
The time axis is shown in a logarithmic scale to reveal
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Fig. 4. The visualization of the fractal torus collision bifurca-
tion (bold dots denote the stable torus and small dots the un-
stable one), where b2 = 1.26 and (a) b1 = 3.06, (b) b1 = 2.904,
(c) b1 = 2.86. With decreasing parameter b1 the stable and
unstable curve become more wrinkled and come closer to each
other and finally touch in a dense set of θ values but not in
all values of θ. The result of this nonsmooth torus collision
bifurcation is a SNA (c).

the self-similar structure of the ACF. In this representa-
tion we observe equidistant main peaks which are related
again to Fibonacci numbers, being an indicator that the
ratio of the driving frequencies is equal to the inverse of
the golden mean. We observe that the main peaks return
close to the value 1, what means that the disorder here
is rather weak. Figure 6c shows the power spectrum of
the process. We hypothesize that it is a mixture of a sin-

Fig. 5. The quasiperiodic time series sin(X) (a) corresponding
to the torus shown in Figure 1a, its autocorrelation function
(ACF) (b), and spectrum (c).

gular continuous and discrete spectrum [21]. A singular
continuous spectrum sits on a set of Lebesgue measure
zero and the peaks are weaker than δ functions. This type
of spectrum is intermediate between discrete and continu-
ous spectrum. Discrete spectrum is represented by δ-peaks
and corresponds to a regular motion. Systems showing a
chaotic behavior are characterized by a continuous spec-
trum. The singular continuous spectrum which one ob-
tains in the case of SNA lies in between of these cases.

5 Current-voltage characteristics

In this section we are going to investigate the current-
voltage characteristics in dependence on the observed dy-
namical regimes. As can be read out from equation (3),
the velocity of the particles in the periodic potential cor-
responds to the voltage across the junction (Ẋ ∼ V ).
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Fig. 6. The time series sin(X) (a) related to the SNA presented
in Figure 1b, its autocorrelation function (b), and spectrum (c).

In order to discuss the current-voltage curve of the over-
damped Josephson junction we need to modify the differ-
ential equation

Ẋ = − sin(X) + I + b1 sin(ϕ1) + b2 sin(ϕ2),
ϕ̇1 = ω1,
ϕ̇2 = ω2,

(6)

where the constant dc current I is introduced. Now it
is possible to compute the current-voltage characteristics,
namely to compute the mean velocity 〈Ẋ〉 of the particle,
or in terms of the Josephson junction theory the mean
voltage across the junction, in dependence on the strength
of current I. In the three cases below we always start with
a certain dynamical regime for I = 0, and then investigate
what happens for I 6= 0.

Fig. 7. The current-voltage characteristics (〈dX/dt〉 ∼ V ) for
the system described by equation (6) (panels (a) and (b)), and
for the system described by equation (7) (panel (c)). For (a)
the regime of torus is obtained for parameter values b1 = b2 =
0.5, for (b) the regime of SNA for b1 = b2 = 2.0. Panel (c)
shows the current-voltage curve for broken symmetry of the
quasiperiodic driving function for the regime of SNA obtained
for parameter values b1 = b2 = c = 2.0. In the case of SNA
a broken symmetry yields a non-zero mean voltage along the
junction (panel (c)) whereas for the case of torus inside some
interval a supercurrent flows through the junction.

5.1 Torus

For the parameter values b1 = b2 = 0.5 and I = 0 the
observed dynamical regime is torus. The current-voltage
curve has been calculated using (5, 6) and is presented
in Figure 7a. There exists some interval of I values for
which the mean voltage across the junction is zero. This
situation just represents the existence of a supercurrent
flowing through the junction without any resistance. In
the dynamical language, the ends of the interval corre-
spond to points in the parameter space where stable torus
– unstable torus collisions take place leading to the ap-
pearance of a SNA or of a 3-torus [22]. (We remind that
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in order to compare with experiments, one has to multiply
these dimensionless values with the critical current IC .)

5.2 Symmetric SNA

System (6) demonstrates the SNA for b1 = b2 = 2.0 and
I = 0. Figure 7b shows the current-voltage curve for these
forcing amplitudes. In contrast to the case of the dynam-
ical regime of torus the plateau at 〈Ẋ〉 = 0 is destroyed.
Although V = 0 for I = 0, there is a finite slope dV

dI

∣∣
I=0

.
This state can be characterized as a resistive one. The
observed plateaus at non-zero values of 〈Ẋ〉 are so-called
Shapiro steps [24,25]. The dynamical reason for the de-
struction of the superconducting state with V = 0 is
the appearance of the unbounded fluctuations of X (see
Fig. 4c). With any small dc-current I these fluctuations
lead to a directed transport, what means finite resistance.
In Section 3.2 we have established that the fractal struc-
ture of the SNA is characterized by jumps of the trajec-
tory by±2π. Thus, the probability to find jumps by±2π is
non-zero. As long as the probability of occurence of jumps
by +2π is the same as of jumps by −2π the mean volt-
age across the junction is zero. This situation is changed
if the external dc current I is nonzero: the probabilities
of jumps are different, the jumps are biased and a finite
voltage appears.

5.3 Asymmetric SNA

Of course, in general the quasiperiodic driving term can
contain additional terms with combinations of both phases
like in the following particular example

Ẋ = − sin(X) + I + b1 sin(ϕ1) + b2 sin(ϕ2 + 2π/5)
+c sin(ϕ1 + ϕ2 + π/4),

ϕ̇1 = ω1,
ϕ̇2 = ω2.

(7)

Strange nonchaotic dynamical behavior for I = 0 can be
found for b1 = b2 = c = 2.0. The corresponding current-
voltage curve is presented in Figure 7c. As expected for
the case of SNA, the state with I 6= 0 is resistive: the
plateau of zero voltage 〈Ẋ〉 = 0 is destroyed. Moreover,
we observe a non-zero voltage for I = 0 (and I 6= 0 for zero
voltage across the junction). In the terms of general trans-
port theory this means a ratchet or a rectification [10,23],
i.e. a directed transport caused by a field whose mean
value is zero. In the next two sections we will show that
by including the third term in the quasiperiodic driving
force (7) we have destroyed a certain symmetry with re-
spect to phases ϕ1 and ϕ2. The asymmetry of the driving
function leads in the case of SNA to a non-zero mean volt-
age across the junction.

6 General quasiperiodically driven systems
and their symmetries

In this section we consider general quasiperiodically driven
systems of the type

Ẋ = F (X,ϕ1, ϕ2) = −f(X) +E(ϕ1, ϕ2),
ϕ̇1 = ω1,
ϕ̇2 = ω2,

(8)

where the ratio of frequencies ω2/ω1 is irrational and
E(ϕ1, ϕ2) is 2π-periodic in each argument. The function
f is bounded and 2π-periodic: f(X + 2π) = f(X).

Now, we intend to find out under which symmetry
properties of the external field E and of the function f
a non-zero current corresponding to non-zero mean veloc-
ity (5) can be observed. To this end, we are looking for
symmetry transformations that leave the equations invari-
ant. Here, we define transformations of the phase space X ,
ϕ1 and ϕ2 changing the sign of the average velocity 〈Ẋ〉.
Obviously, to transform the space we just carry out a re-
flection in X → −X (it may also be a reflection with
respect to some point X → 2X − X , below we assume
X = 0 for clarity of presentation). We call f(X) possess-
ing f̂a symmetry if f(X) is antisymmetric. Next, we have
to define transformations of the phases ϕ1 and ϕ2 in such
a way that the equation of motion (8) remains unchanged
under these transformations. As the symmetry property
of function E(ϕ1, ϕ2) we demand that it changes its sign
after applying an appropriate phase shift (what is equal
to any odd multiple of π) to one or both phases. Let us
expand E(ϕ1, ϕ2) into a Fourier series

E(ϕ1, ϕ2) =
∑
k,l

Ek,l exp(i(kϕ1 + lϕ2)). (9)

(Note that E0,0 = I in our previous notation, we assume
it to vanish). Considering the possible phase shifts of the
phases ϕ1 and ϕ2 by π, we can distinguish three possible
cases of phase shift symmetry:

1. Shift only phase ϕ1 by π: ϕ1 → ϕ1 +π, ϕ2 → ϕ2 yields
in the Fourier representation to

E(ϕ1 + π, ϕ2) =
∑
k,l

Ek,l exp(i(kϕ1 + lϕ2)) exp(ikπ)

=
∑
k,l

(−1)kEk,l exp(i(kϕ1 + lϕ2)).

The function E changes its sign if k is odd while l
can be chosen arbitrarily. It means that even harmon-
ics with regard to phase ϕ1 are forbidden. We call E
possessing ÊS1 symmetry if it changes its sign after
applying a shift by π to phase ϕ1:

E(ϕ1 + π, ϕ2) = −E(ϕ1, ϕ2). (10)

2. Analogously, we call E possessing ÊS2 symmetry if it
changes its sign after applying a shift by π to phase ϕ2:

E(ϕ1, ϕ2 + π) = −E(ϕ1, ϕ2). (11)



226 The European Physical Journal B

3. Shift both phases by π: ϕ1 → ϕ1 +π, ϕ2 → ϕ2 +π. In
the Fourier representation one obtains

E(ϕ1 + π, ϕ2 + π)
=
∑
k,l Ek,l exp(i(kϕ1 + lϕ2)) exp(i(k + l)π)

=
∑
k,l(−1)k+lEk,l exp(i(kϕ1 + lϕ2)).

The function E changes its sign if k+ l is an odd num-
ber, in this case we call E possessing ÊS3 symmetry:

E(ϕ1 + π, ϕ2 + π) = −E(ϕ1, ϕ2). (12)

Based on the discussed properties of function
E(ϕ1, ϕ2) we can define now the three relevant symme-
tries of (8), these are

Ŝ1 :X → −X, ϕ1 → ϕ1 + π, ϕ2 → ϕ2,

Ŝ2 :X → −X,ϕ1 → ϕ1, ϕ2 → ϕ2 + π ,

Ŝ3 :X → −X, ϕ1 → ϕ1 + π, ϕ2 → ϕ2 + π .

These symmetry transformations Ŝ1, Ŝ2 and Ŝ3 leave (8)
unchanged if functions f and E possess f̂a and ÊS1 ,
or ÊS2 , or ÊS3 symmetry, respectively. (Note that ÊS1

and ÊS2 are, in fact, equivalent.) The existence of these
symmetries will be shown below to have consequences for
the transport of the particle in the periodic potential or,
correspondingly, for the value of the mean voltage across
the junction.

7 Symmetry and transport

Here we apply the symmetry properties to calculation of
a directed transport. Let us assume that the X values
have converged to a single attractor in the phase space
(X,ϕ1, ϕ2). On the attractor one can define an invariant
probability measure which we write in terms of a proba-
bility density P (X,ϕ1, ϕ2). We assume that the invariant
measure is ergodic: this is known for quasiperiodic motion
on the torus, and is highly plausible (although a rigorous
proof is still absent) for even more irregular SNA. Thus,
the time average 〈Ẋ〉t over a trajectory originated from
a typical initial condition is the same as the phase space
average

〈Ẋ〉t =
∫ π
−π
∫ 2π

0

∫ 2π

0
P (X,ϕ1, ϕ2)(−f(X)

+E(ϕ1, ϕ2))dXdϕ1dϕ2.
(13)

Suppose that the system possesses one of the symme-
try transformations Ŝ1, Ŝ2, and Ŝ3. Because we assume
existence of a single attractor, a symmetry of the invariant
measures follows, thus P (X,ϕ1, ϕ2) = P (−X,ϕ1 + π, ϕ2)
for Ŝ1, P (X,ϕ1, ϕ2) = P (−X,ϕ1, ϕ2 + π) for Ŝ2, and
P (X,ϕ1, ϕ2) = P (−X,ϕ1 + π, ϕ2 + π) for Ŝ3.

Now we calculate the value of the mean velocity of
the Ŝ1–transformed phase space Ŝ1(〈Ẋ〉t) = 〈Ẋ〉Ŝ1

t . It is

given by

〈Ẋ〉Ŝ1
t =

∫ π
−π
∫ 2π

0

∫ 2π

0 P (−X,ϕ1 + π, ϕ2)(−f(−X)
+E(ϕ1 + π, ϕ2)dXdϕ1dϕ2 .

(14)

Using the symmetry properties of the probability den-
sity P and of the functions f and E we can transform
the integral:

〈Ẋ〉Ŝ1
t =

∫ π
−π
∫ 2π

0

∫ 2π

0 P (−X,ϕ1 + π, ϕ2)(−f(−X)
+E(ϕ1 + π, ϕ2)dXdϕ1dϕ2

=
∫ π
−π
∫ 2π

0

∫ 2π

0
P (X,ϕ1, ϕ2)(f(X)

−E(ϕ1, ϕ2))dXdϕ1dϕ2

= −
∫ π
−π
∫ 2π

0

∫ 2π

0
P (X,ϕ1, ϕ2)(−f(X)

+E(ϕ1, ϕ2))dXdϕ1dϕ2

= −〈Ẋ〉t.
(15)

We conclude that the mean velocity of the transformed
phase space and the velocity of the original one have the
same absolute value and different signs. As we have as-
sumed the existence of a single attractor that is trans-
formed onto itself, this yields

〈Ẋ〉 = −〈Ẋ〉t = 0. (16)

One can show similarly that (16) is also valid for sym-
metry transformations Ŝ2 and Ŝ3. In conclusion, for a
single attractor in the phase space the current is zero if
the fields f and E possess f̂a and ÊS1 , or ÊS2 , or ÊS3

symmetry, respectively. If no one of these symmetries of
function E exists, or the antisymmetry of the space peri-
odic function f is broken, we cannot derive the value of
the mean velocity. In general, it can be expected not to
vanish. In the case of torus, no matter which symmetry
properties of the field f and E are present, it also van-
ishes for small non-symmetric perturbations, not leading
to torus destruction. Another possibility is that there are
two attractors A1 and A2, such that Ŝ1(A1) = A2. In this
case of bistability the transport on each attractor is not
vanishing, but it vanishes if we average over them with
weights 1/2.

We are going now to consider the examples (6) and (7)
from the point of view of the symmetry considerations.
Let us first turn to equation (6). For zero current I
equation (6) reduces to equation (4). As can be easily
proved, there exist a special symmetry property of the
equation (4) with respect to symmetry transformations
in phase space. Applying the transformations: inverting
the space X → −X , and shifting the phases ϕ1 → ϕ1 +π,
ϕ2 → ϕ2+π we establish that it remains unchanged under
this symmetry transformation. These symmetry transfor-
mations are described by the f̂a symmetry of function f
and the Ŝ3 symmetry of the quasiperiodic driving field.
For both dynamical regimes, torus and SNA, the numeri-
cally calculated mean velocity is zero. Now, the additional
nonzero parameter I (see Eq. (6)) breaks the symmetry of
the equation of motion, it means it is not invariant under
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applying the symmetry transformations. However, it has
no influence on the value of the mean voltage obtained
for the regime of torus. It remains zero inside some in-
terval for I values because the values of X are bounded.
In other words, a particle whose motion is restricted to
one cell of a periodic potential cannot be easily moved to
the neighboring cell, one needs a finite force to allow for
hoppings from cell to cell. The motion is asymmetric but
remains bounded. In contrast to this, for the case of SNA
where the values of X are unbounded, the broken sym-
metry, arising for non-zero value of I, causes a nonzero
value for the mean voltage. Indeed, the unbounded values
of X mean that a particle performs an unbiased random
walk hopping from time to time to neighboring cells, and
already a small breaking of symmetry produces a biased
walk with nonzero mean voltage.

Considering now equation (7), we notice that it belongs
to the set of systems for which the Fourier transform of
function E contains terms exp(i(kϕ1 + lϕ2)) where k + l

is even, what destroys the Ŝ3 symmetry. Furthermore, no
other symmetry transformations can be found such that
the mean velocity changes the sign but equation (7) re-
mains unchanged. Since the symmetry is broken for I 6= 0
as well as for I = 0, we expect that the current-voltage
curve does not start in the origin of the current-voltage
diagram but at some non-zero value of the mean voltage
assuming the dynamical regime of SNA. This is confirmed
by our computations of the current-voltage curve of (7)
(see Fig. 7c).

8 Conclusion

In this paper we have considered the model of the over-
damped Josephson junction under the influence of an ex-
ternal quasiperiodic driving field. The dynamics of this
system can be either quasiperiodic (represented by a mo-
tion on a torus) or strange nonchaotic, in dependence on
parameter values. We have applied a geometrical approach
based on the different geometrical structure in Poincaré
map to distinguish between the torus and the SNA. The
analysis of the dynamical regimes has been supplemented
by investigation of the spectral properties (autocorrela-
tion function and power spectrum) which are accessible
in experiments. For each dynamical behavior the current-
voltage characteristics has been computed and discussed.
It has been found out that the dc current breaks the sym-
metry of the equation of motion, what has consequences
for the current-voltage curve in the case of SNA. Here
a mean voltage develops across the junction, whereas for
the regime of torus a supercurrent can flow through. Thus,
the appearance of a SNA can be followed in experiments
as the appearance of a resistive state at zero dc external
current.

To prove the hypothesis that for the regime of SNA a
broken symmetry leads to a non-zero mean voltage across
the junction, we have considered general quasiperiodically
driven overdamped dynamical systems and have analysed
their symmetry properties. There exist three basic types

of symmetry transformation changing the sign of the mean
velocity but leaving the equation of motion unchanged. If
the symmetries are broken, in general a non-zero current
of the particle corresponding to a non-zero mean voltage
could be observed. However, the type of the dynamical
behavior plays an important role, too. Only in the case of
SNA, where an unlimited diffusion of trajectories in the
phase space occurs, a non-zero mean velocity can be ob-
served already for small breaking of symmetries. In the
case of tori, small asymmetries have no influence and
the mean voltage remains zero inside a certain interval
of the external dc current.
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